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A post-VBSCF method, called valence bond second-order perturbation theory (VBPT2), is developed in this
paper and is shown to be (i) economical and (ii) at par with more sophisticated VB and MO-based methods.
The VBPT2 method starts with VBSCF using a minimal structure set. Subsequently, the Møller-Plesset
(MP) partition of the zeroth-order Hamiltonian is obtained by introducing a generalized Fock matrix constructed
from the VBSCF density matrix. The first-order wave function is expressed in terms of singly and doubly
excited VB structures, which are generated by replacing occupied orbitals by virtual orbitals, the latter being
defined as orthogonal to the occupied orbitals. The VBPT2 method retains the simplicity of a VB presentation
by condensing contributions from the excited structures into the minimal number of fundamental structures
that are involved in the VBSCF calculation. The method is tested by calculating the bond energies of H2, F2,
N2, O2, the barrier of identity hydrogen abstraction reaction, the atomization energy and a potential energy
curve for the water molecule and the structural weights and covalent-ionic resonance energy of F2. It is
shown that the VBPT2 method gives results in good agreement with those of the VBCI method and molecular-
orbital based methods such as MRPT and MRCI at the same truncation levels. However, the computational
effort is greatly reduced, compared to that of VBCI. Future potential directions for the development of the
VBPT2 method are outlined.

1. Introduction

Molecular orbital (MO) theory, which is based on delocalized
molecular orbitals, is nowadays the main computational tool in
contemporary quantum chemistry. Nevertheless, valence bond
(VB) theory, which is based on localized atomic orbitals (AOs)
or hybrid atomic orbitals (HAOs), remains as a widespread
conceptual matrix for many chemists.1 VB methods2-8 generally
require expensive computational effort, owing to the use of
nonorthogonal AOs, while their accuracies are not always
satisfactory. As such, the stumbling block for the development
of VB theory has always been its lack of efficient computational
approaches that would possess both quantitative accuracy and
acceptable computational cost.

The classical VB method uses covalent and ionic structures
based on unoptimized AOs, and thus is extremely poor. As one
of the modern VB methods, the valence bond self-consistent
field (VBSCF) method3 optimizes VB orbitals and structural
coefficients simultaneously, and gets improvement in accuracy.
Mathematically, the VBSCF method is equivalent to the
CASSCF method, for a given dimension of the orbital space
and if all the VB structures with delocalized orbitals are
considered. However, usually VB methods employ only a few
structures that are essential to describe the system of interest,
whereas CASSCF uses the complete set of configurations within

the active space. In accord, the VBSCF results are often less
accurate than those of CASSCF. At the same time, both
CASSCF and VBSCF methods include some degree of static
electron correlation, but completely lack dynamic correlation,
which is very important for obtaining accurate bonding energies
or energy gaps between electronic states. Other VB methods
include generalized VB (GVB)5 and spin coupled VB (SCVB)6

methods, which use “overlap-enhanced orbitals” (OEOs) that
are fairly localized on a given center but contain small tails on
other centers.

A VB method which incorporates dynamic correlation is the
breathing orbital VB (BOVB) method.7 This method allows
different VB structures to have their own orbital sets during
orbital optimization procedure. Thus, the orbitals adapt them-
selves to the instantaneous field of each VB structure, rather
than to the mean field of all the structures, as is the case in
VBSCF. This additional degree of freedom in BOVB introduces
dynamic correlation, and thereby improves considerably the
accuracy of the results.

A few years ago, some of us8 introduced a VB method, called
configuration interaction valence bond (VBCI), which accounts
for dynamic correlation, using a CI technique. The method uses
optimized VB orbitals from a VBSCF calculation as occupied
VB orbitals and subsequently constructs properly localized
virtual VB orbitals that are localized and orthogonal to the
occupied orbitals of the same fragments. These virtual VB
orbitals are used, in turn, to generate excited VB structures by
replacing occupied VB orbitals by their corresponding virtual
orbitals. In this manner, the extensive VBCI wave function is
condensed into a minimal set of fundamental structures that are
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used in the VBSCF calculation, and thus VBCI retains the
simplicity of a VBSCF presentation.

While our recent VBCI applications9 showed that the accuracy
of VBCI applications is always satisfactory, still the method is
computationally demanding. The stumbling blocks in a VBCI
calculation are (i) the construction of the Hamiltonian and
overlap matrices, which requires expensive effort due to the
use of nonorthogonal AOs; and (ii) the solution of the general
secular equation, where the overlap matrix is not unity. Both
of these steps are time-consuming, compared to the MO-based
CI methods, in which the Hamiltonian matrix is sparse and easily
computed by using Condon-Slater rules. Thus, an economical
VB method that contains both static and dynamic correlation
effect and is at par with MO-based methods is still a targeted
goal.

Perturbation theory is known to be an economical approach for
electronic correlation, and is widely applied in MO-based methods,
like the single-reference-based MP2 method, or multireference-
based methods, such as CASPT210 and MBPT2.10-13 In the VB
framework, perturbation theory is also used in the GVB14,15 and
SCVB methods.16 In this paper, we will present a VB method called
valence bond second order perturbation theory (VBPT2), which
incorporates a perturbative treatment of excited VB structures. In
this method, the MP partition of the zeroth-order Hamiltonian is
defined by introducing a generalized Fock matrix that is constructed
from the VBSCF density matrix. The first-order wave function is
expressed in terms of singly and doubly excited VB structures,
which are generated by replacing occupied orbitals by virtual
orbitals that are defined so as to be orthogonal to the occupied
ones. As shall be demonstrated, the VBPT2 method is much more
efficient than the VBCI method, while its accuracy is satisfactory.

2. Theory and Methodology

2.1. Valence Bond Self-Consistent Field (VBSCF) Method.
In the VBSCF method, a many-electron wave function is
expressed in terms of a set of VB functions, called fundamental
structures, which are essential to the description for the particular
chemical problem,

where ΦK may be either a spin-coupled form, called Heitler-
London-Slater-Pauling (HLSP) function, or a tableau func-
tion,4 if the spin-free form of quantum chemistry17 is used.
Traditionally, a HLSP function is expressed as a linear
combination of Slater determinants, which are built upon AOs,
while a spin-free VB function is defined by using the projection
operator of the symmetric group. The procedure for evaluating
the Hamiltonian and overlap matrices is described in detail
elsewhere4,18 and will not be addressed in this paper.

During the VBSCF procedure, the structure coefficients CK
(0)

and VB orbitals φm are optimized simultaneously by minimizing
the total energy ESCF, which is determined by solving the usual
secular equation,

where HSCF and MSCF are the Hamiltonian and overlap matrices
in the basis of VBSCF functions, defined as in eq 3:

The VBSCF structure weights can be evaluated by the
Coulson-Chirgwin formula, eq 4:

The form of VB orbitals depends on the requirement of the
particular application; they may be localized, delocalized, or
semilocalized. In the process of orbital optimization, the
evaluation of energy gradients is the most time-consuming step.
One widely used method is the super-CI method,19 which is
based on the generalized Brillouin theorem.20 Another strategy
is based on a numerical algorithm.18a Very recently, we presented
an algorithm18b for evaluating the energy gradients by computing
the derivative of the density with respect to the coefficients of
basis functions.

In the VBPT2 method, the VBSCF wave function is defined
as the reference wave function from which excitations are
generated and treated by perturbation, in the same way as the
CASSCF wave function serves as a reference in the CASPT2
method.10

2.2. Block-Orthogonalized Orbitals and Excited VB Struc-
tures. Throughout the present paper, we will distinguish the
various orbitals according to their occupancies in the reference
VBSCF wave function. The inactive orbitals are those that are
always doubly occupied (indices i, j, k, l, . . .), the active orbitals
are the remaining occupied orbitals, with variable occupancies
(indices u, V, w, . . .), and the virtual orbitals are always
unoccupied in the VBSCF reference (indices a, b, c, . . .). The
indices m and n denote any occupied orbitals (inactive + active),
while the indices p, q, r, s, . . . denote any orbitals. For the VB
structures, the indices K, L, . . . will denote the structures
involved in the VBSCF reference, whereas R, S, . . . will refer
to excited VB structures.

In the traditional VBSCF method, only occupied orbitals are
optimized in the calculation and virtual orbitals are not defined.
On the other hand, virtual orbitals are required if one wants to
perform a post-VBSCF calculation involving excited VB
structures. However, to create physically clear excited structures,
the virtual orbitals must be strictly localized on fragments, while
virtual orbitals belonging to the same fragment must maintain
orthogonality mutually, as was previously done in the VBCI
method.8 In the VBPT2 method, the orthogonality constraint is
generalized, for the sake of computational efficiency, by defining
the virtual orbitals as orthogonal to all occupied orbitals over
the whole molecule. To this end, a Schmidt orthogonalization
is performed for basis functions as follows:

where �µ is a basis function, S is the overlap matrix of basis
functions, and T is the coefficient matrix of VBSCF orbitals.
This generates a set of virtual orbitals, but this set is overcom-
plete. The linearly independent virtual orbitals are determined
by diagonalizing the overlap matrix of the new basis functions
{�µ′} and keeping the eigenvectors which share nonzero
eigenvalues. In general, virtual orbitals are not strictly localized
anymore, but their shapes are localized mainly on a fragment
with orthogonalization tails over other fragments.

In brief, orbitals are partitioned into three groups, inactive,
active, and virtual orbitals, such that (i) the inactive and virtual
orbitals are orthogonal and (ii) the active orbitals are kept in

ΨVBSCF ) ∑
K

CK
(0)ΦK (1)

HSCFC(0) ) ESCFMSCFC(0) (2)

HKL
SCF ) 〈ΦK|H|ΦL〉 and MKL

SCF ) 〈ΦK|ΦL〉 (3)

WK
SCF ) ∑

L

CK
(0)MKL

SCFCL
(0) (4)

�µ′ ) �µ - ∑
m

(ST(T+ST)-1)µmφm (5)
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the VB spirit as mutually nonorthogonal, but are orthogonal to
the inactive and virtual ones by a Schmidt orthogonalization.
Such a definition of the orbitals keeps the VBSCF energy
invariant, while the orthogonalization between orbital groups
ensures the efficiency of VBPT2 method.

During the PT2 procedure, the excited VB structures are
generated from the VBSCF structures by replacing occupied
orbitals by virtual orbitals. It may happen that excited structures
that are generated from different fundamental structures are
linearly dependent. A checking procedure is performed by
diagonalizing the overlap matrix of excited structures, where
the eigenfunctions corresponding to the zero-eigenvalue are
removed. The excitation levels are designated as single (S),
double (D), and so on, where (S) involves one orbital replace-
ment, while (D) involves two orbital replacements. The space
containing all singly and doubly excited structures is designated
as VSD.

2.3. The Zeroth-Order Hamiltonian. In a similar fashion
to MO-based multireference perturbation theory, we define a
one-electron Fock operator,

where Ĵmn and K̂mn are Coulomb and exchange operators,
respectively, and Dmn

SCF is an element of the VBSCF density
matrix. The matrix elements of the Fock operator are written
as

The Fock matrix f in eq 7 may be transformed into a simple
form by diagonalizing the blocks of the inactive and virtual
orbital spaces, because the linear transformation of orbitals
within the inactive and virtual spaces does not change the
VBSCF wave function. With the transformed inactive and virtual
orbitals, the Fock operator f̂ is diagonal for both of inactive
and virtual blocks, i.e.,

Furthermore, the Fock matrix elements between different sets
are neglected, which is also optional in the CASPT2 method,
namely, CASPT2D.

Using the Fock operator defined in eq 6, the zeroth-order
Hamiltonian is defined as

where F̂ ) ∑if̂(i), P̂0 ) |0〉〈0| is a projector onto the VBSCF
space, P̂K is a projector onto the complementary space to the
VBSCF wave function, and P̂SD is a projector associated with
singly and doubly excited structures from the reference wave
function. If the VBSCF wave function is taken as a Slater
determinant of doubly occupied inactive orbitals, the zeroth-
order Hamiltonian reduces to the Hartree-Fock-based MP2
theory.

It may be shown that the VBSCF wave function is an
eigenfunction of the zeroth-order Hamiltonian Ĥ0 with eigenvalue

2.4. The First-Order Wave Function and the Second-
Order Energy. In multireference second-order perturbation
theory, the wave function is written as the sum of the zeroth-
order and the first-order wave functions,

Here, the VBSCF wave function is taken as the reference zeroth-
order wave function for further perturbative treatment:

Since higher-order excitations do not contribute to the first-
order interacting space, the first-order wave function is written
as a linear combination of the singly and doubly excited
structures,

Due to the orthogonality between the occupied and virtual
orbitals, structures belonging to the VSD space are orthogonal
to the VBSCF space VSCF,

Then the intermediate normalization condition holds,

According to the Rayleigh-Schrödinger perturbation theory,
the expansion coefficients of first-order wave function and the
second-order energy are written respectively as

where C(0) and C(1) are the coefficient column matrices of the
VBSCF wave function, eq 12, and the first-order wave functions,
eq 16, respectively, E(0) is the zeroth-order energy, and matrices
H0

11, H01, H10, and M11 are respectively defined as

It is obvious that the most time-consuming part in solving
eqs 16 and 17 is the inversion of the matrix (H0

11 - E(0)M11),
which is block-diagonal, owing to the orthogonality constraints

f̂(i) ) ĥ(i) + ∑
m,n

Dmn
SCF(Ĵmn(i) -

1
2

K̂mn(i)) (6)

fpq ) hpq + ∑
m,n

Dmn
SCF[(pq|mn) - 1

2
(pm|qn)] (7)

fij ) δijεi and fab ) δabεa (8)

Ĥ0 ) P̂0F̂P̂0 + P̂KF̂P̂K + P̂SDF̂P̂SD + . . . (9)

E(0) ) 〈0|F̂|0〉 (10)

|Ψ〉 ) |Ψ(0)〉 + |Ψ(1)〉 (11)

|Ψ(0)〉 ) |ΨSCF〉 ) ∑
K

CK
(0)|ΦK〉 (12)

Ψ(1) ) ∑
R∈VSD

CR
(1)|ΦR〉 (13)

〈Ψ(0)|Ψ(1)〉 ) 0 (14)

〈Ψ(0)|Ψ〉 ) 1 (15)

C(1) ) (H0
11 - E(0)M11)-1H10C(0) (16)

E(2) ) C(0)H01(H0
11 - E(0)M11)-1H10C(0) (17)

(H0
11)RS ) 〈ΦR|Ĥ0|ΦS〉 (18)

(H01)KR ) 〈ΦK|Ĥ|ΦR〉, (H10)RK ) 〈ΦR|Ĥ|ΦK〉
(19)

(M11)RS ) 〈ΦR|ΦS〉 (20)
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that are applied to the different orbital sets and the block-
diagonal form of the Fock matrix. Furthermore, any element of
this matrix between two excited structures differing by one
inactive or virtual orbital is zero.

2.5. The Structural Weights in the VBPT2 Method. One
of the most important advantages of modern VB theory is its
ability to provide chemical insight with a compact wave
function.1a The VBSCF wave function is written as a linear
combination of a small set of fundamental structures, and this
compactness makes the wave function particularly insightful.
In the VBPT2 method, the VBSCF wave function is augmented
by the first-order wave function, which usually involves a large
number of excited structures. To keep the VBPT2 wave function
as compact as in the VBSCF method, it is necessary to partition
the first-order wave function into the fundamental structures of
the reference VBSCF function. To this end, a PT function
ΦK

PTassociated with the fundamental structure ΦK is defined as

where the coefficient matrix X is defined as

and the normalization factor is given as

From eq 21, it can be seen that the first-order wave function
is partitioned referred to the fundamental structure ΦK, i.e.,

Thus, the wave function in VBPT2 can be written as

where

Equation 25 shows that the VBPT2 method enables one to
represent the VBPT2 wave function in a compact form.
Therefore, the weights of the fundamental structures with
perturbation correction can be defined as

where MKL
PT is the overlap matrix of the fundamental structures,

defined as

Similarly, the second-order energy can be written as

where

EKL
(2) is the second-order correction to the Hamiltonian matrix

element HKL
SCF,

Therefore, the extensive VBPT2 wave function is condensed
into a minimal set of fundamental VB structures that are all
dressed with dynamic correlation.

2.6. Calculation of Diabatic States. Although no unique
definition actually exists, a diabatic state is generally defined
as a wave function that keeps a constant physical content
throughout a potential surface. Such states are extremely useful
in molecular dynamics or in reactivity models,21 and are well
represented by a unique VB structure or a restricted combination
of VB structures. It is therefore essential that the VBPT2 method
be able to calculate the energies of diabatic states in good
agreement with the VBCISD results. Diabatic energies can be
obtained in two ways: either by projection from the wave
function of the ground state or, more simply, by directly
calculating the energy of the VB structure or group of VB
structures that represent the diabatic state. It is this latter option
that has been chosen in this work.

3. Applications: Results and Discussion

In order to test the performance of the VBPT2 method as
compared to VBCISD and other computational methods, some
bond dissociation energies, reaction barrier, atomization energy,
structural weights and resonance energies are presented in this
section. All the orbitals used for the VBSCF calculations are
strictly localized on their own atoms. The calculations were
performed with the Xiamen valence bond (XMVB) package.
To obtain basis set integrals and nuclear repulsion energy,
preliminary ROHF calculations are carried out using the
Gaussian 03 package.22

3.1. The Dihydrogen Molecule. Dihydrogen played an
extremely important role in the early history of molecular
quantum mechanics. In 1927 Heitler and London (HL) published
their seminal paper23 on the origins of the chemical bond in the
H2 molecule, using Heisenberg’s resonance approach.24 Since
then, dihydrogen has been taken as a typical example for VB
theory in textbooks. In this work, the standard aug-cc-pvTZ basis
set is employed in the calculation, and three fundamental VB
structures, one covalent and two ionic structures, as shown in
Scheme 1, are used for the VBSCF calculations. The spectro-
scopic parameters re, ωe and De are computed using three points
with 0.05 a0 separation fit to a second-degree polynomial in
1/R as that used by Bauschlicher and Langhoff. It should be

ΦK
PT ) NK(ΦK + ∑

R

XRKΦR) (21)
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11 - E(0)M11)-1H10 (22)
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11 XSL)
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noted that these three-point fits to the calculated potential are
only accurate to within ∼20 cm-1.14a

Table 1 shows the spectroscopic constants of H2 obtained by
various VB methods, alongside MO-based results. It can be seen
that the spectroscopic constants computed by the VBSCF
method are in very good agreement with those of the CASSCF
method. As expected, neither of them is quantitatively good,
compared to the full CI results. On the other hand, the VBPT2
results are virtually identical to CASPT2 ones, and very close
to the full CI results. Relative to the VBSCF level, VBPT2
reduces the errors in re, ωe and De from 0.024 to 0.003 a0, from
228 to 45 cm-1 and from 0.586 to 0.098 eV, respectively. As
expected, the VBCISD results are exactly the same as those of
FCI, as they are equivalent for a two-electron molecule.

3.2. Spectroscopic Constants of the Ground State of
Dioxygen. As the second example, we study the bond-breaking
process of a multiply bonded diatomic molecule, dioxygen,
which has been studied recently with the VBCI method.9b

Multiple bonds are generally difficult test cases for any method,
for dynamic correlation is essential for getting quantitative
accuracy. For the sake of comparison to the full CI results of
Bauschlicher and Langhoff,25 the same double-� plus polariza-
tion basis set (DZP) is used in the present work, and the two
lowest-lying orbitals are kept as inactive core orbitals that remain
doubly occupied in both the VBSCF and post-VBSCF wave
functions. The spectroscopic parameters re, ωe and De were fitted
in the same way as in the calculation of the H2 molecule.

In our previous study of the dioxygen molecule, based on
the analysis of the electron pairing pattern, twelve fundamental
VB structures were found necessary to represent the triplet
ground state in a balanced way. These VB structures, shown in
Scheme 2, describe the dioxygen molecule as displaying a σ
bond and two three-electron π bonds, one in each π plane. In
the present work, the VBPT2 calculations are performed at two
levels of accuracy, differing by the choice of the VBSCF
reference function. At the first level, the VBSCF reference,
designated as VBSCF(12), involves the twelve fundamental
structures of Scheme 2. At the second level, the VBSCF
reference includes all 105 structures that can be generated by
arranging six electrons in six atomic orbitals to form a triplet
state. In this latter reference function, designated as VB-
SCF(105), the VB orbitals are taken from the VBSCF(12)
calculation and not further optimized. The corresponding two
post-VBSCF levels will be referred to as VBPT2(12) and
VBPT2(105), respectively. The spectroscopic constants of O2,
as calculated by the various methods, are collected in Table 2.

As can be seen, the VBSCF(12) results are not quantitatively
satisfactory, compared to the FCI results. The errors in re and

De are 0.050 a0 and 1.638 eV, respectively, and the VBSCF(105)
level performs hardly better. On the other hand, the calculated
frequencies are satisfactory at these levels, being close to the
FCI value to within 28 cm-1.

The results are considerably improved when perturbation
corrections are applied. For the equilibrium distance re, the
deviation relative to FCI reduces to 0.015 a0 at the VBPT2(12)
level, and to only 0.006 a0 at the VBPT2(105) level. For the
dissociation energy, the VBSCF(12) value which was much too
low is increased by 1.328 eV at the VBPT(12) level, which is

SCHEME 1: The VB Structure Set for H2

TABLE 1: Some Calculated Spectroscopic Constants of H2

method re (a0) ωe (cm-1) De (eV)

FCI 1.405 4421 4.707
CASSCFa 1.427 4255 4.14
CASPT2Na 1.410 4407 4.57
VBSCF 1.429 4193 4.121
VBPT2 1.408 4376 4.609
VBCISD 1.405 4421 4.707

a Reference 10b, where the ANO(4s3p2d) basis set was used and
orbitals 1σg and 1σu are taken as active orbitals.

SCHEME 2: The VB Structure Set for O2

TABLE 2: Some Calculated Spectroscopic Constants for the
Ground State of O2

method re (a0) ωe (cm-1) De (eV)

FCIa 2.318 1608 4.637
VBSCF(12)b 2.368 1580 2.999
VBPT2(12)b 2.333 1560 4.327
VBSCF(105)c 2.368 1581 3.045
VBPT2(105)c 2.324 1601 4.661
VBCISD(12)b,d 2.333 1594 4.154
VBCISDe 2.336 1545 4.77
CASSCFf 2.322 1566 3.678
CASPT2Nf 2.317 1607 4.658

a Reference 25. b Twelve fundamental VB structures are used.
c 105 fundamental structures are used, but the orbitals are optimized
at the VBSCF(12) level. d Three orbital blocks, σ, πx and πy, are
used. e Reference 9b, where the cc-pVTZ basis set is used.
f Reference 10c.
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slightly better than VBCISD (1.155 eV), but still deviates by
0.310 eV from the FCI value. This remaining error is completely
corrected at the VBPT2(105) level, which provides a De value
within 0.024 eV of the FCI result, and close to the CASPT2N
value. It is worthwhile to mention that VBPT2(105) uses only
a small structure set (12 structures) for orbital optimization, and
the result is that the computational cost in VBPT2(105) is not
much more expensive than in VBPT2(12).

The frequency values ωe, which are already quite accurate
at the VBSCF levels, are not improved at the VBPT(12) level,
but come even closer to the FCI value at the VBCISD and
VBPT2(105) levels, with a remaining deviation of only 7 cm-1

in this latter case.
The total energies of O2 as calculated by various methods

are collected in Table 3. Unlike the MO-based MRCI method,
the total energy of the VBPT2 is lower than its corresponding
VBCISD. This is because the VBCI method includes only
excited structures whose electronic pairing patterns and charge
distributions are the same as the VBSCF structures. For the 12-
structure based calculation, the biggest deviation from FCI
occurs near 2.25 a0, and amounts to 168 mhartree for VBSCF
and 22 mhartree for VBPT2(12). The deviation of VBPT2(105)
is about 9 mhartree at 2.25 a0, and remains remarkably constant
at the different geometries. The deviations of VBPT2(105) are
very close to those of CASPT2N.

3.3. Spectroscopic Constants of the Ground State of
Dinitrogen. As the third example, we study another classical
test case, the bond breaking process of the dinitrogen molecule,
which displays a triple bond in its singlet ground state. As has
been done in the dioxygen case, our results are compared with
the full CI results of Bauschlicher and Langhoff,25 and to that
aim we have used the same double-� polarization (DZP) basis
as these authors, and kept the two lowest-lying orbitals as
inactive core orbitals that remain doubly occupied at all levels.
The spectroscopic parameters re, ωe and De were fitted in the
same way as in the calculation of the H2 molecule.

The VB structures that form the fundamental set for N2 are
chosen as follows. First a set of covalent structures is generated.
This set includes the main covalent structure, S1, displaying
one σ and two π bonds, complemented with four VB structures,
S2-S5, so as to form a complete and linearly independent set
according to Rumer’s method.26 Then a set of monoionic
structures, S6-S11, is generated from S1 by turning each
covalent bond into an ionic bond, alternatively. Finally six dionic
structures are generated, S12-S17, chosen so that each nitrogen
atom remains neutral in the VB structure, therefore eliminating
diionic structures displaying doubly charged atoms. The 17
selected VB structures are shown in Scheme 3. As in the

dioxygen calculation above, two levels are used. The first level,
designated as VBSCF(17), uses the 17 structures of Scheme 3
for the reference VBSCF and the subsequent PT2 calculation,
called VBPT2(17). The second level uses the complete set of
175 VB structures that can be generated for a 6-orbital 6-electron
singlet state, leading to the VBSCF(175) and VBPT2(175) wave
functions. As in the preceding case, the orbitals optimized in
the small set calculation are used indifferently at the two VBSCF
levels as well as the corresponding VBPT2 levels. The

TABLE 3: Deviation in Total Energies (hartree) from Full
CI for O2 in a DZP Basis as a Function of the O-O
Distance (a0)

method 2.25 a0 2.30 a0 2.35 a0 100.0 a0

FCIa -149.87515 -149.87695 -149.87669 -149.70668
VBSCF(12)b 0.169718 0.167519 0.165512 0.105588
VBPT2(12)b 0.021598 0.021088 0.020528 0.009433
VBSCF(105)c 0.168036 0.16583 0.163819 0.105588
VBPT2(105)c 0.008849 0.008623 0.008404 0.009433
VBCISD(12)b,d 0.046259 0.045649 0.045076 0.027891
CASSCFe 0.14325 0.14317 0.14300 0.10788
CASPT2Ne 0.00488 0.00482 0.00476 0.00560

a The total energy is given, ref 25. b 12 fundamental VB
structures are used. c 105 fundamental structures are used, but VB
orbitals are optimized at the VBSCF(12) level. d Three orbital
blocks, σ, πx, πy, are used in the VBCI calculation. e Reference 10c.

SCHEME 3: The VB Structure Set for N2
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spectroscopic constants of the ground state of N2, as calculated
by various methods, are collected in Table 4.

It can be seen that the spectroscopic parameters computed at
the VBSCF(17) and VBSCF(175) levels are in good agreement
with each others, showing the adequacy of the 17-structure set.
Hence VBSCF(17) provides a good starting point for a
perturbation calculation to improve the accuracy of calculations.
The perturbation correction, VBPT2(17), reduced the error in
re from 0.014 a0 in VBSCF(17) to 0.008 a0, while for
VBPT2(175), the error is further reduced to 0.003 a0, which is
virtually identical to that of CASPT2N. For the bond dissociation
energies the VBSCF values are less erroneous than in the
dioxygen case, with errors of 0.662 and 0.558 eV at the
VBSCF(17) and VBSCF(175) levels, respectively. VBPT2(17)
recovers 0.335 eV of the bond energy, still with a deviation of
0.327 eV relative to the FCI value. The VBPT2(175) level
further improves the value of bonding energy, with a remaining
absolute error of 0.175 eV (i.e., 2% in relative error), close to
the CASPT2 and VBCISD values. For the calculated frequen-
cies, VBPT2(17) does not get much improvement over the
VBSCF(17) calculation, while the VBPT2(175) value matches
the FCI one very well with a deviation of only 3 cm-1.

3.4. The Difluorine Molecule. The difluorine molecule is
known to be a difficult test case for any computational method
since the molecule is found to be unbound at the Hartree-Fock
limit. As is well-known, the Hartree-Fock failure is due to its
overestimation of the weights of the ionic components, par-
ticularly high in energy in this molecule. Therefore quantitatively
accurate bonding energies require the VB method to provide a
balanced description of ionic and covalent structures, in a
manner that accounts for both static and dynamic electronic
correlation. The F2 molecule will therefore be used as a test to
examine the abilities of the various methods to reproduce the
spectroscopic parameters, but also the weights of the covalent
and ionic structures and the energies of the diabatic covalent
structures relative to the ground state. In this work, all the 18
electrons are involved in the VB calculations, with the two
lowest-lying orbitals (actually the core orbitals) being kept as
doubly occupied inactive orbitals. The structure set for the initial
VBSCF calculation is shown in Scheme 4, using strictly
localized hybrid atomic orbitals (HAOs), and a correlation-
consistent basis set of triple-� plus polarization quality, cc-pVTZ
basis set. The re and De value of the VBSCF and VBPT2
methods are obtained using a fit of three points with 0.03 Å
separation to a second-degree polynomial in 1/R.

Table 5 displays the bond dissociation energies as computed
by various VB and MO methods. As expected, the VBSCF and
CASSCF levels, which lack dynamic correlation, provide too
long equilibrium distances, too low frequencies, and very poor
dissociation energies. While no full CI calculation has been
reported, to our knowledge, for this molecule, the CASPT2 and
MRCI calculations both provide equilibrium bond lengths and
frequencies in reasonable agreement with experiment. On the
other hand, these methods yield dissociation energies on the
low side, 33-35 kcal/mol, of the experimental value of 38 kcal/
mol. However these differences are normal as the F2 molecule
is known to require very large basis sets for experimental
properties to be accurately reproduced. Thus, the MRCI and
CASPT2 spectroscopic constants are probably very close to the
values that would arise from full CI. As for the VBPT2 level,
it provides bonding distance, frequency and dissociation energies
in very good agreement with VBCISD, both methods matching
the CASPT2 values very well with differences smaller than 1
kcal/mol for the bonding energy. The L-BOVB level provides
a slightly smaller De and longer re, however it must be
remembered that the BOVB method has several levels of
sophistication, L-BOVB being the lowest one.

Let us now turn to the diabatic states of the F2 molecule, i.e.
the purely covalent (S1 in Scheme 4) and purely ionic VB
structures (S2 and S3). These structures are unambiguously
defined in the BOVB method and also in VBCISD, in which
all the orbitals, occupied as well as virtual, are strictly localized.
On the other hand, the purely covalent or ionic nature of the
diabatic states is less strictly established in the VBPT2 method,
as the virtual orbitals are not strictly localized (vide supra).
Therefore, it is important to check that the VBPT2 method and
its close analogue VBCISD provide values that do not differ
too much from each others for the weights and energies of the
diabatic structures.

Table 6 shows the weights of the covalent and ionic structures
for F2 (RFF ) 2.70 a0). It can be seen that the weights for various
methods are in good agreement for all the methods. The BOVB
and VBCISD values for the weight of the covalent structure
are in fair agreement with each others, but not quite equal,
indicating a slight influence of the correlation of inactive
electrons (not included in BOVB) on the structural weights. This
latter effect is present in both VBCISD and VBPT2 methods,
which nevertheless provide slightly different weights, a probable
consequence of the nonperfect localization of virtual orbitals

TABLE 4: Some Calculated Spectroscopic Constants for the
Ground State of N2

method re (a0) ωe (cm-1) De (eV)

FCIa 2.123 2341 8.748
VBSCF(17)b 2.109 2388 8.086
VBPT2(17)b 2.115 2373 8.421
VBSCF(175)c 2.114 2364 8.190
VBPT2(175)c 2.120 2344 8.573
VBCISD(17)b 2.121 2330 8.651
CASSCFd 2.119 2337 8.333
CASPT2Nd 2.122 2342 8.621

a Reference 25. b Seventeen fundamental VB structures are used.
c 175 fundamental VB structures are used, but the VB orbitals are
optimized at the VBSCF(17) level. d Reference 10c.

SCHEME 4: The VB Structure Set for F2

TABLE 5: Spectroscopic Constants for F2

method re (a0) ωe (cm-1) De (kcal/mol)

VBSCF 2.784 552.7 10.05
VBPT2 2.683 905.3 35.72
VBCISD 2.689 886.8 35.35
L-BOVB 2.700 892.7 33.32
CASSCFa 2.755 803.1 19.62
CASPT2a 2.691 899.1 35.19
MRCIa 2.680 889.5 32.81
exptb 2.668 917 38.0

a The MOLPRO package is used for the CASSCF(2,2), CASPT2
and MRCI calculations.32 b Reference 29.

TABLE 6: Weights of the VB Structures and Resonance
Energy (RE) of F2, at an F-F Distance of 2.70 a0

method Wcov Wion1/Wion2 RE (kcal/mol)

VBSCF 0.785 0.108 46.28
L-BOVB 0.695 0.152 71.46
VBCISD 0.730 0.135 60.68
VBPT2 0.778 0.111 60.02
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in the latter method. However the differences are small and do
not matter much for this quantity whose definition is only
approximate and which is not an observable property.

Table 6 also shows the resonance energy (RE) arising from
the mixing of covalent and ionic structures for F2 (RFF ) 2.70
a0), in other words the energy of the covalent structure alone
relative to the ground state. In previous studies,27 it has always
been found that the VBCISD-calculated values for REs are
systematically smaller than the BOVB-calculated ones. Which
one of the methods give “better” REs is not important for an
isolated case, since all the methods give large REs for this
molecule, significantly larger than the corresponding BDE value.
On the other hand, it is important that VBPT2 and VBCISD
give similar results, since these two methods closely resemble
each other as far as electron correlation is considered. Table 6
shows that this is indeed the case, as both methods provide about
the same RE values in the range 60-61 kcal/mol. These results
show that the VBPT2 method is able to provide not only
accurate quantitative results for the ground state, but also
important VB information for the diabatic states, that are
essential to VB theory.

3.5. The H2O Molecule. Another classical test for a novel
method is the calculation of a complete potential energy curve
(PEC). The symmetric stretching of the water molecule has often
been used for that purpose.28 Olsen and co-workers have
presented a FCI calculation of the corresponding PEC,28 using
a basis set of valence double-� plus polarization quality (VDZP).
For the sake of comparison, the same PEC is calculated in this
work by the VBSCF and VBPT2 methods using the same basis
set and geometries as in the reference calculation of Olsen and
co-workers. The calculations are carried out using C2V symmetry,
where the water molecule is in the yz plane and the z axis is
taken as the C2 axis. The HOH bond angle is fixed as 110.6°.
The active orbitals are those involved in the O-H bonds, namely
the 1s orbitals of the hydrogen atoms and two hybrid atomic
orbitals of oxygen, approximately of sp3 type, and pointing to
the hydrogen atoms. The remaining orbitals, i.e. the 1s core
and the two lone pairs of oxygen, are doubly occupied inactive
orbitals. The VBSCF calculation involves all the 20 VB
structures that constitute a full VB space for a system of four
electrons in four active orbitals (Scheme 5). Table 7 shows the
total energy of the water molecule at various OH bond distances
with different methods. Of course, what matters for judging the
quality of the various methods is not the absolute energy by
itself, but rather the constancy of the energy difference with
the FCI values along the PEC. As can be seen, the VBSCF
performance is rather poor in that respect, as its energy
difference with FCI varies from 186 mhartree at the equilibrium
geometry (Re) to only 125 mhartree at 3*Re. The CASSCF
method, despite a much larger number of configurations in the
active space, performs hardly better. On the other hand, the
CASPT2 PEC is fairly satisfactory, with energy differences with
the FCI energies varying by only 5 mhartree, meaning that both
levels of calculations yield PECs of rather similar shapes.

The VBPT2 calculations have been performed at two levels.
At the first level, referred to as VBPT2(occ), only excitations
from the occupied orbitals to virtual ones are involved. At the
second level, VBPT2(all), the excitations form inactive orbitals
to active ones are also included. While VBPT2(occ) performs
slightly better than CASPT2 with deviations from FCI remaining
fairly constant within 4 mhartree, from Re all the way to 8*Re,
the VBPT2(all) performs even better, yielding a PEC virtually
parallel to the FCI one, with quasi-constant energy deviations,
within 1 mhartree.

Table 8 collects the atomization energy of the water molecule
as computed by the various methods. As expected from the
above discussion, the VBSCF and CASSCF results are rather
poor, with errors ranging from 29 to 39 kcal/mol, while CASPT2
and VBPT2 values, especially VBPT2(all), are in excellent
agreement with the FCI value.

3.6. The H3 Reaction Barrier. The identity hydrogen
transfer, eq 32,

is the simplest reaction that describes bond exchange. As such,
the accurate calculation of its barrier in the 1970s constituted a
landmark achievement of quantum chemistry and specifically
of MO-based methods that include electron correlation.30 In a
previous work,9a we demonstrated that the barrier could be very
well reproduced at the BOVB and VBCISD levels in a standard
basis set of moderate size, aug-cc-pVTZ. In this work, the barrier
is calculated at the VBPT2 level, using the same basis set and
the geometries of the transition state (TS) and reactants taken
from our previous VBCISD/aug-cc-pVTZ calculations.9a

Eight VB structures, shown in Scheme 6, are necessary and
sufficient to describe the electronic structure of H3

•. The VBPT2
results are displayed in Table 9, together with some calculated
barriers at other VB levels, for comparison. The importance of
dynamic correlation is demonstrated by the poor result of the
VBSCF level, which provides much too high a barrier. On the
other hand, all the VB levels that include dynamic correlation
provide barriers in good agreement with the reference CCSD(T)
value in the same basis set. In particular, the VBPT2 value of

SCHEME 5: The VB Structure Set for H2O

H-H + H · f H · + H-H (32)
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10.7 kcal/mol is quite close to the VBCISD barrier (10.0 kcal/
mol), itself within 0.2 kcal/mol of the reference CCSD(T) value.

3.7. Size Consistency. Size consistency is a key property
for any modern computational method. Obviously, we are also
concerned about the problem in the VBPT2 method. The size-
consistency of the VBPT2 method was tested on the O2, N2

and F2 diatomic molecules. To that aim, the energy of the
separate atoms was, in each case, compared to the energy of
the supersystem constituted of the two atoms separated by a
long distance, 50 or 100 Å. Any important difference between
the so-calculated energies would be the sign of a lack of size-
consistency. The results, shown in Table 10, show that, in all
cases, the energies of the supersystems are equivalent to the
energies of the corresponding separate atoms, within 10-2

mhartree in all three cases, indicating an excellent size-
consistency property of the VBPT2 method.

4. Conclusions

This paper introduces the valence bond second-order pertur-
bation theory (VBPT2) method, which uses a perturbation
technique to improve the energetics after a VBSCF calculation.
In the VBPT2 method, the reference wave function is flexibly
defined, depending on the purpose of application, which can
be a compact VBSCF wave function or even a VB wave
function that includes a full structure set. From this point of
view, VBPT2 has no limitation, in principle, since it can always
be improved systematically by increasing the reference wave
function. At the limit of a full VB set with delocalized orbitals,
the VBPT2 method is identical to the MO-based CASPT2
method. By defining the first-order correction to VB function,
the VBPT2 wave function is ultimately expressed in terms of a
minimal number of fundamental structures that dictate the
chemistry of the problem, as in the simple VBSCF method. In
so doing, VBPT2 retains the simplicity of a classical VB
presentation.

Compared to another post-VBSCF method, VBCI, the VBPT2
method is computationally efficient. No Hamiltonian matrix
elements with nonorthogonal orbitals are required after the
VBSCF step. Owing to the orthogonality between different
orbital blocks, all matrix elements involved in the perturbation
correction procedure of VBPT2 are easily computed by using
the Condon-Slater rules. Roughly speaking, the computational
cost of the perturbation step is approximately the same as in
the traditional CASPT2 method.

The test calculations presented in this paper show that for
the calculations of relative energies, such as bond energies,
atomization energies, and reaction barriers, VBPT2 gives results
that are at par with the VBCISD method, and match those of
the MO-based MRCI and CASPT2 methods. For the total
energy, VBPT2 values are always lower than those of VBCI
with the same VBSCF wave function, indicating that VBPT2
covers more dynamic correlation than VBCI, since the excited
structure space in VBPT2 is larger than that in the VBCI
method. The total VBPT2 energies match those of CASPT2 if
one uses a properly designed VB wave function as reference.
To our knowledge, VBPT2 is the first VB method that provides
total molecular energies that are comparable to those of MO-
based methods for dynamic correlation.

As in other multireference perturbation methods, a contraction
technique of the excited space, which is widely used in CASPT2,

TABLE 7: Deviation in Total Energies (hartree) from Full CI of H2O as a Function of the Symmetric Stretching from the
Equilibrium OH Distance Re

method Re 1.5*Re 2.0*Re 2.5*Re 3.0*Re 8.0*Re

FCIa -76.241860 -76.072348 -75.951665 -75.917991 -75.911946 -75.91030
CASSCF(8,6)b 0.164025 0.150029 0.133568 0.126322 0.124715
CASPT2b 0.012833 0.010819 0.008111 0.008033 0.008262
VBSCF 0.185720 0.162571 0.137994 0.127189 0.124965 0.12423
VBPT2(occ)c 0.035294 0.037417 0.038052 0.039430 0.039699 0.039676
VBPT2(all)d 0.027409 0.026567 0.026782 0.028302 0.02866 0.028673

a The total energy is given.28 b Reference 28. c Only excitations from occupied orbitals to virtual ones are included. d All excitations are
included, involving excitations from inactive orbitals to active ones.

TABLE 8: Calculated Atomization Energy of H2O

method De (kcal/mol)a

FCIb 208.06
CASSCFc 179.6
CASPT2c 210.4
VBSCF 169.47
VBPT2(occ)d 210.81
VBPT2(all)e 208.85

a De ) E(Re) - E(8*Re). b Reference 28. c Reference 31. d Only
excitations from occupied orbitals to virtual ones are included. e All
excitations are included, involving excitations from inactive orbitals
to active ones.

SCHEME 6: The VB Structure Set for H3

TABLE 9: The Barrier of the Hydrogen Exchange Reaction

method E(H3) (au) E(H2+H) (au) barrier (kcal/mol)

VBSCF -1.61804 -1.65081 20.6
VBPT2 -1.65175 -1.66885 10.7
L-BOVB -1.63485 -1.65115 10.2
VBCISD -1.65655 -1.67246 10.0
CCSD(T) -1.65689 -1.67246 9.8

TABLE 10: VBPT2-Calculated Energies (hartrees) of Some
Supersystems of Two Distant Atoms as Compared with the
Summed Energies of the Separate Atoms

moleculea E(A2) 2E(A) ∆E (size)

2N -108.828718 -108.828718 <0.1 × 10-5

2O -149.697247 -149.697240 0.7 × 10-5

2F -199.199010 -199.199003 0.7 × 10-5

a RNN ) 50 a0, ROO ) 100 a0, RFF ) 100 Å.
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could later be employed to further promote the computational
efficiency of the VBPT2 method. This is under development.
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